ActivePointers: A Case for Software Address Translation on GPUs

Sagi Shahar, Shai Bergman, Mark Silberstein
Technion — Israel Institute of Technology
{sagi, shaibergl}@tx.technion.ac.il, mark@ee.technion.ac.il

Abstract—Modern discrete GPUs have been the processors of
choice for accelerating compute-intensive applications, but us-
ing them in large-scale data processing is extremely challenging.
Unfortunately, they do not provide important I/O abstractions
long established in the CPU context, such as memory mapped
files, which shield programmers from the complexity of buffer
and I/O device management. However, implementing these
abstractions on GPUs poses a problem: the limited GPU virtual
memory system provides no address space management and
page fault handling mechanisms to GPU developers, and does
not allow modifications to memory mappings for running GPU
programs.

We implement ActivePointers, a software address translation
layer and paging system that introduces native support for
page faults and virtual address space management to GPU
programs, and enables the implementation of fully functional
memory mapped files on commodity GPUs. Files mapped into
GPU memory are accessed using active pointers, which behave
like regular pointers but access the GPU page cache under the
hood, and trigger page faults which are handled on the GPU.
We design and evaluate a number of novel mechanisms, includ-
ing a translation cache in hardware registers and translation
aggregation for deadlock-free page fault handling of threads
in a single warp.

We extensively evaluate ActivePointers on commodity
NVIDIA GPUs using microbenchmarks, and also implement a
complex image processing application that constructs a photo
collage from a subset of 10 million images stored in a 40GB
file. The GPU implementation maps the entire file into GPU
memory and accesses it via active pointers. The use of active
pointers adds only up to 1% to the application’s runtime,
while enabling speedups of up to 3.9x over a combined
CPU+GPU implementation and 2.6 x over a 12-core CPU-only
implementation which uses AVX vector instructions.

Keywords-Operating systems; Parallel architectures; Mem-
ory management;

I. INTRODUCTION

Discrete GPUs have become an integral part of high-
performance computing systems, and they continue to be
augmented with advanced hardware capabilities that improve
their programmability and performance for general purpose
parallel workloads. In line with these hardware trends,
recent work demonstrates the benefits of providing operating
system services, such as access to files and network sockets,
directly to GPU programs [1], [2]. These services, coupled
with hardware support for direct access to I/O devices
from discrete GPUs [3], facilitate the development of GPU-
accelerated I/O-intensive applications.

Despite these advances, GPU developers still lack im-
portant high-level 1/O abstractions, especially useful for
working with large data sets. Consider, for example, a
database application which uses an index to randomly access
parts of very large files. CPU developers commonly use the
mmap() system call to map the file into a contiguous linear
segment in a process’s virtual address space. The file is
then accessed via an intuitive pointer interface, while the
operating system transparently loads the data on-demand
and maintains a page cache to optimize application perfor-
mance. Unfortunately, mmap() functionality is not available
on GPUs. The recent GPUfs system adds the ability to access
files from GPU programs, but does not support memory
mapped files either [1].

Such unpredictable data-driven access patterns are com-
mon in many applications that deal with large datasets,
for example, image similarity search [4], image classifica-
tion [5], or tweet search [6]. Abundant parallelism and high
compute intensity make such applications ideal candidates
for GPU acceleration. Yet without the appropriate I/O ab-
stractions, implementing them on GPUs is extremely hard.

The fundamental obstacle to building advanced I/O ser-
vices on discrete GPUs lies in the severely constrained
hardware virtual memory (VM), which lacks essential ca-
pabilities necessary for their implementation. For example,
the traditional design of memory mapped files in CPUs relies
on VM hardware to trigger a major page fault on the first
access to the mapped region, allowing the OS to initialize a
physical page with the file contents, and map it into the
process’s address space. In contrast, the majority of the
available discrete GPUs have no support for page faults (with
the notable exception of the recently announced NVIDIA
Pascal), and there are none that provide public interfaces to
manage GPU address space or modify memory mappings
from running GPU kernels.

In this paper we explore the idea of overcoming the
limitations of the GPU’s hardware VM entirely in software.
We describe the design of a lightweight software layer
which adds low-overhead support for address translation
and page faults to commodity discrete GPUs. The key
element of our design is a new type of memory pointer we
call ActivePointer — apointer. An apointer behaves like a
traditional C pointer, but contrary to standard GPU pointers,
access to an apointer may generate a page fault which is
handled on the GPU.

CPU-managed Page Cache 4
HW VM Page Table

GPU
5 ﬁl%‘
v
| GPU C Page fault
driver handler 3
CPU OS

Figure 1: A likely implementation of GPU mmap() in a CPU-centric VM
management design. (1) The page fault is passed to the GPU driver on the
CPU. (2) The CPU executes the page fault handler. (3) The data is copied
from the backing store and (4) written into the CPU-managed GPU page
cache. (5) The CPU updates the GPU hardware VM page table.

The primary goal of ActivePointers is to allow GPU
developers to build compelling I/O services, which are well
established in the CPU context, by bringing virtual address
space management and page fault handling to GPUs. First,
we focus on memory mapped files, because they signif-
icantly simplify application development: they eliminate
buffer allocation, read/write system calls, and file pointer
arithmetics, as well as enable seamless serialization/de-
serialization of in-memory data structures to/from files. At
the same time, they offer multiple performance benefits that
save programmer’s optimization efforts, e.g., demand paging
and zero-copy, which are not available with read/write calls
alone. Second, one can build an encrypted file system for
GPUs by installing custom page fault handlers for encrypt-
ing/decrypting file contents on-the-fly, like in CryptFS [7].
This design requires no changes to GPU application code
and allows seamless offloading of encryption/decryption op-
erations to the GPU, without storing plain-text data in CPU
memory. ActivePointers can also provide a unified pointer-
based interface for accessing a variety of low-latency storage
devices directly from GPUs. Finally, page fault interposition
has been useful for implementing software distributed shared
memory in a CPU cluster. ActivePointers pave the way to
building a distributed shared memory system in a cluster of
GPUs.

We illustrate the utility of ActivePointers by implement-
ing a fully functional memory-mapped file abstraction on
discrete GPUs. Just as in CPUs, a programmer obtains an
apointer by mapping a file region into GPU memory, uses
it as a regular pointer to read and write file contents, and
then unmaps it. Apointer page faults are passed to the GPU
page cache layer, which manages the page cache and a page
table in GPU memory, and performs data movements to and
from the host file system.

ActivePointers are designed to complement rather than
replace the VM hardware in GPUs, and serve as a convenient
solution to bridge the functionality gap in discrete GPU
systems today. Future generations of discrete GPUs, such

N I/O Page Table
1/0 Page Cache

ActivePointers:
SW address translation

HW VM o Page fault
Page Table handler 2
GPU

Figure 2: An implementation of GPU mmap() in the GPU-centric VM
management design using ActivePointers. (1) The address translation layer
triggers a page fault which is executed on the GPU (2) Data is copied from
the backing store and (3) written into the GPU I/O page cache. (4) The
GPU updates the I/O page table. No accesses to the hardware VM page
table are necessary.

as NVIDIA Pascal, are in fact adding page fault support
in hardware [8], which naturally raises the question of the
relevance of ActivePointers in that case.

One of the contributions of this work, is however, a novel
GPU-centric application-level VM management design (Fig-
ure 2) that we believe to be conceptually different from the
CPU-centric approach (Figure 1) likely to be implemented
in future systems. Indeed, the common hardware VM design
found in the recent research publications [9]-[12], and im-
plemented in hybrid HSA-compliant GPU-CPU SoCs [13],
[14], is the one in which the GPU page fault handling and
VM management are delegated to the GPU driver running
on the CPU.

In contrast, the GPU-centric approach we propose here
offers certain advantages in the context of implementing
advanced I/O abstractions. The GPU-centric approach does
not suffer from the scalability bottlenecks of the CPU-centric
design, in which the CPU needs to sustain potentially high
load while handling multiple concurrent page faults triggered
by massively parallel GPU code. On the other hand, running
a page fault handler on the GPU may completely eliminate
the CPU involvement, including the I/O operations. A key
to bypassing the CPU for performing I/O operations is the
ability to access peripheral I/O devices directly from the
GPU via peer-to-peer Direct Memory Access (DMA), which
is already broadly available today [3]. Together, GPU-native
page fault handling and peer-to-peer DMA technology help
reduce CPU load and power consumption, and improve la-
tency of GPU-originated I/O, which is particularly important
as the latency of access to I/O devices is constantly dropping.

There are two primary challenges that we address to make
apointers practical.

Address translation overhead. The overhead of software
address translation, invoked on every access to an apointer,
may significantly affect the performance of page-fault free
accesses. We introduce a novel address translation mech-
anism that caches virtual-to-physical mappings in hard-
ware registers, thus eliminating the majority of page table

lookups. Additionally, we leverage the native latency hid- lation layer for commodity discrete GPUs, and integrate it with
ing capabilities of GPUs to hide the remaining translation a GPU file system layer to build a fully functional memory-
overheads behind the latency of memory accesses. mapped file abstraction

Per-thread apointer support. Enabling fine-grain accesses « We thoroughly study the performance of the translation layer
to apointers, and providing standard pointer semantics from and its design alternatives

each thread poses a challenge on the GPU hardware, which « We present an end-to-end evaluation with a real GPU applica-
features lockstep execution of groups of threads (in NVIDIA tion that uses a 40GB dataset stored on the host, and features

GPUs 32 threads, which form a warp). We build a translation an unpredictable data-driven data access pattern.

aggregation mechanism that performs coalesced parallel
page translation, and guarantees deadlock-free page fault
handling.

We implement ActivePointers for NVIDIA Kepler GPUs
using CUDA, and integrate them with the GPUfs file system
layer [1] to implement memory mapped files on GPUs.

We extensively evaluate the system performance on a
range of microbenchmarks and real workloads. The overhead
of the address translation layer alone without page faults is
quite low, even when compared to direct memory access
without apointers. For example, when executing memory
copy between two GPU memory regions using apointers,
we achieve 97% of the maximum GPU memory bandwidth,
and an average slowdown of about 9% over eight workloads
with different compute-to-memory ratios. While the apointer
dereferencing and arithmetics operations add computations
on each access, we show that their overheads become largely
hidden as the GPU occupancy grows. This latency hiding
ability of the GPU architecture is the key to providing
efficient address translation in software.

We also implement a complex image processing appli-
cation that builds a photo collage using a large dataset
of 40GB worth of small images. The application accesses
different parts of the dataset as it processes the input, using
a data-driven algorithm to quickly find appropriate images
in the dataset. In our implementation, we map the entire
dataset into GPU memory and access it from the GPU
through apointers. The application runs entirely in the GPU
and requires no CPU code development. We find that the
overhead of ActivePointers is less than 1% compared to the
fastest GPU implementation using GPUfs without memory
mapped files. Notably, this implementation is up to 2.6x
faster than the optimized CPU run on 12 cores which uses
256bit-wise AVX vector instructions, and up to 3.9x faster
than our CPU-GPU execution, even on the dataset that is 8
times larger than the GPU physical memory. Importantly, the
use of apointers enables us to seamlessly support datasets
where the images are not aligned at GPU page boundaries,
demonstrating the true power of the memory-mapped file
abstraction.

Contributions. Our contributions in this paper are as fol-
lows:

We begin with a brief overview of the GPU architecture
(§ II), describe the design (§ III) and implementation (§ IV)
of the address translation layer, and its integration with
GPUfs (§ V). We then evaluate the system (§ VI), and
discuss its current limitations and the ways to eliminate them
via extensions to hardware and compilers (§ VII). Finally,
we review the related work (§ VIII) and conclude (§ IX).

II. BACKGROUND

This section provides a brief overview of the GPU soft-
ware/hardware model. We use NVIDIA CUDA terminology
since we use NVIDIA GPUs in this work.

GPU architecture. GPUs are massively parallel processors
comprised of multiple cores — streaming multiprocessors
(SM). Each SM contains multiple SIMD vector units, and
has several hardware contexts (64 in recent NVIDIA GPUs).

Execution model. An SM executes groups of threads (32
threads per group in NVIDIA GPUs) called warps in a
lockstep manner. Threads in a warp may exercise divergent
execution paths. These paths are executed sequentially, slow-
ing down all the threads in the warp. Several warps (up to
32) are grouped in a threadblock and are guaranteed to run
on the same SM. A program running on the GPU is called
a GPU kernel.

GPU memory. All GPU threads share global GPU memory.
This memory has high bandwidth and is separate from the
host memory. Accesses to this memory are cached in a 2-
level cache. In addition, all the threads in a threadblock share
a small and high-bandwidth on-die scratchpad memory,
managed explicitly by GPU code. Finally, each thread is
allocated a set of private registers which are not directly
accessible from other threads, but via shuffle intra-warp
instructions.

GPU-CPU interaction. Discrete GPUs are connected to
the CPU via a Peripheral Component Interconnect Express
(PCIe) bus. GPU access to the CPU memory through the
PClIe bus has about 20x lower bandwidth than access to its
own memory. Therefore the data is usually moved to GPU
memory for faster access prior to kernel execution.

III. DESIGN

« We examine the GPU-centric management approach to man-
aging GPU virtual memory in the context of advanced I/O
abstractions on GPUs

o We design and implement an efficient software address trans-

Figure 2 shows the high level design of the system that
implements memory-mapped file abstraction on GPUs. In
this section, we focus on the address translation layer, and
discuss the design of the page cache in Section V.

Terminology. The address translation layer provides the
abstraction of a contiguous address space on top of scattered
GPU memory pages, managed by a page cache. The data
resides in a backing store, such as a disk or remote memory,
and the page cache layer transfers the data between memory
pages and the backing store upon page fault or swap out.

We refer to the GPU hardware virtual memory as active
physical, or aphysical, memory, and to the address space
exposed by the translation layer as active virtual, or avirtual,
memory. This terminology reflects the fact that the transla-
tion layer we develop adds a level of indirection on top of
hardware virtual memory.

A. Design considerations
We define the following design requirements:

1) Low translation overhead. Address translation is per-
formed on every memory access to avirtual memory, and
therefore the translation overhead must be low. Our main fo-
cus is on the performance of page-fault free accesses, which
are particularly sensitive to the extra translation overhead.

2) Efficient thread-level translation. Each thread may access
any virtual address independently of other threads. Page-fault
free accesses must be fast even when accessing different
avirtual addresses, and page fault handling must guarantee
deadlock freedom.

3) Scalability. The design must accommodate concurrent
address translation requests from tens of thousands of con-
currently active threads.

Minimizing the address translation overhead is the main
challenge. The system-wide page table is accessible to all
threads and therefore is stored in global memory. To avoid
costly page table lookups on every access, the avirtual-
to-aphysical mappings of frequently used pages should be
cached locally in per-SM memory, but implementing such
caching in software poses a challenge.

The coherence challenge. Cached avirtual-to-aphysical
mappings must be kept coherent across all threads, because
using stale mappings would result in an error if the original
page is swapped out. This coherence requirement makes it
particularly hard to build an efficient software translation
caching mechanism, because the two types of on-chip per-
SM memory — a scratchpad and L1 cache — are incoherent
across the SMs. As a result, additional coherence protocols
for the translation cache must be implemented in software,
but it is unclear how to implement them efficiently without
inter-core interrupts, which are not supported on GPUs.

Eliminating asynchronous changes of page mappings.
Asynchronous changes of the page mapping are the root
cause of the coherence problem. For example, the paging
system may decide to swap out a page, and the application,
unaware of these changes, must experience a page fault
when accessing the page. Here, the paging system is fully
decoupled from the application. Consequently, a separate

hardware/software infrastructure is needed to invalidate the
mapping across all the translation caches exactly when
it is changed via the TLB shootdown mechanisms. This
infrastructure is hard and inefficient to implement as part
of GPU kernel. Therefore, constraining the ability of the
paging system to revoke application access to a page at will
is necessary to prevent asynchronous page mapping changes,
eliminating the need for translation cache coherence, thus
trading some system flexibility for significant gains in per-
formance and simplicity. We explore this design in our work.

B. Design principles

Active pages with fixed mappings. The system guarantees
that an avirtual-to-aphysical mapping for a page may change
only if no threads can access the page. In other words, the
page cannot be evicted from the page cache if it is being
actively used. This guarantee allows each thread to cache the
page mapping in its thread-private memory, e.g., hardware
registers, and safely access it without performing a TLB or
page table lookup. A page whose page mapping is fixed and
is not allowed to change is called an active page.

Keeping track of active pages. The system maintains a
per-page reference count to prevent eviction of active pages.
The challenge is to keep track of all the references to active
pages, and do it transparently to the user. We design a
mechanism we call ActivePointers, which controls all ac-
cesses to each page and increments the reference count when
the page is first accessed, caching its avirtual-to-aphysical
mapping. The mechanism then proactively decrements the
count using a heuristic, discarding the cached mapping when
the count reaches zero. Our heuristic strives to keep the
number of non-evictable pages low, to avoid clogging the
system memory, but also reduces unnecessary page table
lookups if the reference count is decremented too quickly.

We now describe the main system components that im-
plement these design principles.

C. Active pointers

The key building block of our design is a new type
of memory pointer called an active pointer or apointer.
Apointers are used to access avirtual memory and behave
just like regular memory pointers. They support all the stan-
dard pointer operations, such as dereferencing and pointer
arithmetics, and can be passed as function parameters or
return values. A simple example of using an apointer is
shown in Figure 3. Under the hood, apointers trigger page
faults, monitor memory protection and help track active
pages, as we discuss below.

Apointer states. An apointer can be in one of three states:
uninitialized, unlinked and linked.

An apointer is created uninitialized. The initialization is
performed by either assignment from another apointer, or
by calling a virtual memory management function such as
gvmmap, discussed in Section V.

int foo(){
//ptr initalized unlinked

APtr<float> ptr =

gvmmap(size , O_RDONLY, fd, foffset)

ptr += 10; // pointer arithmetics

float fl1 = xptr; // page fault on the first access

sptr=25; // page fault free access via linked ptr
}

//ptr destroyed and unlinked

Figure 3: A simple example of using an apointer in GPU code. The
apointer is initialized by calling the GPU version of mmap(), described
in Section V.

A linked apointer holds a valid avirtual-to-aphysical
mapping, i.e., it holds a reference to an active page. Deref-
erencing a linked apointer guarantees page fault-free data
access, and requires no translation lookup. The system is
designed to store the aphysical address of a page in the
apointer itself, that is, in a hardware register that holds the
value of the apointer when accessing memory.

An unlinked apointer holds a reference to data that
might not be present in aphysical memory. In other words,
dereferencing an unlinked apointer may result in a page
fault. Just as in CPUs, there are minor and major page
faults. A minor page fault occurs when the referenced page
is already present in the page cache, but accessing it requires
page table lookup. Minor page faults are handled internally
by the translation layer. A major page fault occurs if the
data is not present in the page cache and is passed to and
dealt with by the paging system.

Apointer and the page reference count. Apointers im-
plement the reference counting for active pages. Specifi-
cally, each page in the page cache holds a reference count
representing the number of linked apointers holding the
reference to that page. The paging layer cannot evict a page
with a positive reference count from the page cache. This
condition guarantees page-fault free accesses via the linked
apointer. The reference count of a page is automatically
incremented when the page transitions to the linked state,
and decremented when it becomes unlinked, or when it is
destroyed outside the program scope as in the example in
Figure 3. This approach to reference counting works well for
the common case of apointers allocated in local variables on
the stack.

Transition between linked and unlinked states. The
apointer state transition diagram is presented in Figure 4.
The first access to an unlinked apointer generates a page
fault, moving it into the linked state. An apointer transitions
to the unlinked state when it is assigned from another
apointer, for example when it is initialized. The intuition
is that such an apointer might remain unused, unnecessarily
keeping the page pinned in memory. Another transition to
the unlinked state is performed when an apointer is modified
to point outside of the current page, e.g., as a result of a
pointer arithmetic operation.

Assignment
Out-of-page arithmetics |

h Page fault

Figure 4: Apointer state transition diagram

D. Thread-level address translation

The apointer design allows efficient page-fault free mem-
ory access for threads in the same warp. This is because
the page-fault free logic of the address translation mecha-
nism does not exercise divergent control flow, even when
accessing different pages. However, if some threads in the
warp encounter a page fault, they execute the slow path,
which involves access to the page table and other shared data
structures. Naively making each thread in the warp handle
its own page fault independently may result in a deadlock,
for example when two threads try to acquire the same lock.

To solve this problem we design a warp-level translation
aggregation mechanism that guarantees deadlock freedom
when handling page faults. The mechanism identifies at run-
time the subgroups of threads in a warp that follow the same
control path and performs their address translation together.
The faults of different pages are handled sequentially. The
access to the shared data structures is performed by a single
leader thread on behalf of all the others in the subgroup,
eliminating the danger of deadlocks. This mechanism also
helps reduce the contention on shared data structures. For
example, a page reference count is incremented by the total
number of threads in a warp that access that page, instead
of incrementing by one for an apointer in each thread
separately.

We also considered the idea of handling multiple page
faults concurrently by different threads in the same warp,
but decided against it. Allowing such fine grain access
to globally shared data structures makes it much more
difficult to guarantee deadlock freedom. However, the added
complexity is unlikely to yield performance benefits due
to control flow divergence in the page cache logic while
accessing different pages.

We discuss the algorithm and its implementation in detail
in Section I'V-C.

E. Software TLB: pros and cons

The apointer design makes it possible to cache an avir-
tual-to-aphysical mapping in hardware registers; therefore a
traditional per-core TLB is no longer necessary. Yet when
the same set of pages is accessed by multiple threads in a
threadblock, adding a TLB may help further reduce page
table lookups. In our design, each threadblock (up to 1024
threads) maintains its own TLB for its threads. In addition
to the page mappings, the TLB keeps the threadblock-
private reference count for each cached page, and serves as

a reference count aggregator for the threads in a threadblock,
similar to the optimization of sloppy counters in CPUs [15].

The case for a TLB-less address translation. The TLB
design leads to unexpected complications. First, a TLB entry
with a non-zero reference count can no longer be simply
evicted from the TLB upon conflict because the count will
be lost. Moreover, if the threads in the same warp contend
for the TLB space, they may deadlock. We therefore allow
such threads to update the page count directly in the page
table maintained by the paging layer, noting that doing so
does not affect the correctness of the counter. Second, global
apointers created on the heap or statically in a global array
may not use the TLB. These apointers can be accessed by all
the GPU threads, across multiple threadblocks, and therefore
may end up being cached in multiple TLBs, leading to an
erroneous reference count duplication. Finally, the TLB data
structure itself adds overheads to address translation, because
the TLB updates are costly.

Therefore, adding the TLB is not necessarily advanta-
geous in practice. In fact, the best results in our experiments
are achieved by using a TLB-less design (Section VI-C).

IV. IMPLEMENTATION

In this section we describe the implementation of the
address translation layer on GPUs using NVIDIA CUDA.

A. Apointer

An apointer is implemented as a C++ class. It comprises
two parts; a translation field, which stores the avirtual-to-
aphysical mapping and is hence used in every access to an
apointer, and metadata fields, used only in page faults. The
translation field is specifically designed to fit into 64 bit. This
allows the compiler to cache it in a hardware register, which
is crucial for reducing the overhead of fault-free accesses.
The metadata can be stored in local memory (usually backed
by L1 cache) and includes the page offset and the size of the
mapped region, as well as auxiliary data used by the paging
system, such as the file or device ID for which the mapping
is performed. The metadata is only accessed on page faults
and therefore does not affect the performance of fault-free
accesses.

The translation field (Figure 5) contains a valid bit to
distinguish between linked and unlinked apointers, page
access permission bits, and the mapping data necessary for
address translation which we discuss next.

B. Address translation

Figure 5 illustrates the use of apointers in address trans-
lation. For linked apointers, the mapping data holds an
aphysical address, which, when combined with the page
cache base address and the offset within the page, represents
the location in the page cache with the requested data. For
unlinked apointers, the mapping data stores the location of
the data in the backing store, e.g., a file offset. We call

1 3 48 12
A A

| Offset |
;

L Resolved
+ address
Page Cache —»
Base Addr

[}
Minor page fault

Update page reference count in the page table
Update aPhysical in apointer
Set valid bit in apointer

Access
bits

| Valid xAddress
L L

I

aPhysical
L

Page in
Page Cache
2

Major page fault

Allocate page in Page Cache
Evict non-active pages if necessary
Copy data from backing store

Figure 5: A functional diagram describing the use of apointers

this location an eXternal address, or xAddress. When the
page fault mechanism is triggered upon the first access, the
xAddress stored in the unlinked apointer is used to check
whether the relevant data needs to be transferred from the
backing store (major page fault) or whether it is already
cached (minor page fault). When the page is allocated and
initialized, the xAddress in an apointer is replaced with
an aphysical address and the valid bit is set, marking the
apointer as linked.

Design alternatives. We consider another design, which we
call a short apointer (as opposed to a long apointer, which
is described above and can hold longer addresses), where the
translation field always holds both an aphysical address and
xAddress. Long and short apointers provide two different
ways to balance between the address space size (32/40 bits
for aphysical/xAddress vs 60 bits for each) and the cost in
terms of the TLB size and runtime overhead. We evaluate
both in Section VI-C.

Optimizing performance via speculative prefetch. The
overhead of fault free accesses can be reduced by accessing
memory in parallel with checking the apointer’s valid bit.
These checks are performed by all the warp threads jointly,
to decide whether page fault handling is necessary for any of
them. We take advantage of the instruction level parallelism
of NVIDIA GPUs to speculatively fetch the data from
memory, while performing the valid bit voting across all
the threads in parallel. We evaluate this optimization in
Section VI-A.

C. Translation aggregation

We implement a translation aggregation mechanism that
enables efficient access to an apointer in page-fault free and
page fault cases. The pseudocode is shown in Listing 1.

If no page fault is encountered by any of the threads,
they quickly return the data without divergence. Otherwise,
subgroups of threads accessing the same page select one
thread from the group as a leader, which handles the page
fault for that group. Note that all the threads in a warp
converge to execute the page fault handler jointly, in order
to enable internal page fault logic to be executed more
efficiently. For example, the page fault handler may need to

T dereference (aptr) {

1

2 // Test if there are page faults

3 isPagefault!=__all(aptr.valid);

4 if (isPagefault) pageFault(aptr);

5 return x(aptr.aPhys);

6 }

7 pageFault(aptr) {

8 // as long as there unhandled page faults

9 while (true) {

10 // Choose a leader in the group

11 warpLeader=__ffs (__ballot (! aptr.valid));

12 // No more pagefaults to handle

13 if (warpLeader == 0) break;

14 // Broadcast leader’s backing store address to
15 // all threads

16 bAddr=__shfl (aptr.bAddr, warpLeader);

17

18 // Aggregate page reference count

19 isRequestHandling=(aptr.bAddr == bAddr);

20 pageRefCount=__popc(__ballot(requestHandling));
21 // Handle page fault using all threads in a warp
22 // Access locks only in warpLeader

23 // Update page reference count

24 aPhys =

25 HandlePageFault(warpLeader, bAddr, pageRefCount);
26 if (isRequestHandling) {

27 aptr.aPhys=aPhys;

28 aptr.valid=1;

29

30 }

31 }

Listing 1: Translation aggregation using CUDA warp primitives:
__all: test if all warp threads satisfy a predicate. __ballot: fetch
one bit across all warp threads, __shfl: send a word to all warp
threads, ___ffs: find the first set bit, and __popc: count the total
number of set bits.

copy data from one page to another as a part of batching data
transfers from the host, as we discuss in Section V. However,
the warp leader is the only one that accesses concurrent data
structures.

D. Software TLB

We implement a direct mapped TLB for simplicity. The
TLB is implemented as a simple concurrent hash table in
the per-threadblock scratchpad memory, enabling lock free
search and locked modifications. Each TLB entry requires 12
bytes and 20 bytes for short and long apointers respectively,
with an additional 4 bytes for entry lock. The total size of
a TLB with 32 entries is 512 bytes and 768 bytes for short
and long apointers respectively, which is less than 5% of
the typical per-threadblock scratchpad memory size.

V. INTEGRATION WITH GPUFS

To build a complete system that provides support for
memory mapped files on GPUs, we integrate ActivePointers
with the GPUfs GPU file system layer [1], [16], [17]. GPUfs
exposes a CPU-like file API, allowing GPU programs to
read and write files on the host file system. GPUfs also
implements a page cache in GPU memory, including support
for page pinning and a swapping mechanism for accessing
large files.

The main challenge is to enable fine-grain, random ac-
cesses to the file contents, which is typical for memory

mapped files and differs from the standard file system
access pattern. It imposes two requirements on the page
cache design: small pages for allowing fine-grain access and
frequent page table updates. As we show in Section VI-E,
the original GPUfs does not satisfy these requirements since
it has been optimized for large pages and rare page table
updates. We briefly describe the necessary changes below.
A major page fault handling mechanism that accesses
the host file system and transfer data has already been
implemented in GPUfs and require only minor changes.

Highly concurrent page cache. We implement a new
GPUfs page table using a single concurrent hash table to
index pages for all files in the page cache. The total size
of the hash table is set to be 16 times larger than the total
number of pages in the page cache. This configuration results
in a low collision rate (3%), with relatively small memory
overhead (less than 5% of the page cache size). Our GPU
concurrent hash table implementation uses fine-grain locking
per bucket for insertion and lock-free reads.

Optimizing for small page size. We implement batching to
reduce data transfer overheads over the PCI when dealing
with small 4KB pages. Upon every request to read from a
file, the system aggregates several host-to-GPU transfers on
the host, and then issues a single call to copy data into the
GPU staging area. The GPU threads that invoke the file read
are responsible for moving the contents from the staging area
into the respective GPU page cache page. The benefits of
batching are particularly pronounced for small 4K pages.

A detailed analysis of the GPUfs performance and mod-
ifications is available elsewhere [17].

VI. EVALUATION

In the evaluation we focus on two main questions: (1)
What is the overhead of the software address translation
layer on GPUs (§ VI-A and § VI-B) (2) What is the end-to-
end performance of applications that use ActivePointers to
map large datasets into GPU memory (§ VI-E).

We run our experiments on a SuperMicro server with
2 x 6-core Intel 17-4960X CPUs at 3.6GHz, with 15MB
L3/CPU, with power management and hyperthreading dis-
abled for ensuring consistent results. We use a single GPU
of the dual NVIDIA Tesla K80. We disable memory error
correction. We run Ubuntu Linux kernel 3.13.0-32 with
CUDA SDK 7.0 and NVIDIA GPU driver 346.59.

In all our benchmarks, we limit the compiler to allocate up
to 64 hardware registers per thread, which enables full SM
occupancy. The best balance between the GPU occupancy
and register spillage overhead for our workloads is achieved
with 64 registers, because lower occupancy with more
registers/thread affects latency hiding. All baseline imple-
mentations require fewer than 64 registers/thread and do not
spill registers. Therefore, all the reported results effectively
include the register pressure overhead of ActivePointers.

Implementation read inc read+ read

inc inc+rw
Raw access 225 32 257 257
Compiler 367 (+63%) | 152 (x3.7) | 519 (+101%) | 585 (+127%)
Optimized PTX | 282 (+25%) - 434 (+69%) 544 (+111%)
Prefetching 271 (+20%) - 423 (+65%) 435 (+75%)

Table I: GPU cycles when using apointer 4-byte read and increment (inc),
separately and combined, and with page permission checks (rw), compared
to the number of cycles when using a regular pointer (first row). Overhead
is shown in parenthesis. Lower is better.

We run each benchmark ten times, clearing the GPU
buffer cache between runs when applicable, and use the first
3 runs as a warm up. We report the arithmetic mean of the
last 7 iterations. The measured standard deviation for GPU
only benchmarks is less than 1%, while benchmarks that
include major page faults exhibit standard deviation of up
to 10%.

The source code of ActivePointers, all the benchmarks
and GPUTfs is available online .

A. Apointer performance in page-fault free accesses

We develop two versions of every benchmark. The base-
line version accesses memory directly without apointers.
The other uses exactly the same code but with apointers
initialized to map a region in the GPU global memory.
This experiment evaluates the overhead of the apointer logic
for pointer dereferencing and arithmetics. The calls to the
GPUfs layer are excluded.

Latency overhead. We run a test with 32 threads (one warp)
where all the threads perform coalesced accesses to different
offsets in one page. Each access involves a memory read and
an increment operation. To measure the latency we record
the GPU tick count for each apointer operation. We read the
internal GPU clock via clock () intrinsics. We deduct 16
cycles from each measurement to account for measurement
overheads.

Table I shows the latency of memory read and increment
operations in GPU clock cycles for different implemen-
tations. Low level CUDA assembly (PTX) optimizations
and speculative prefetching (described in Section IV-B)
reduce the read latency overhead from 63% to 20%. The
increment is relatively slow, since the most efficient apointer
implementation uses 18 instructions vs. only 2 for a sim-
ple pointer increment. We also measure the total latency
overhead for both operations combined, because we found
that memory reads are often followed by pointer increment.
The performance for memory read combined with increment
and permission checks (read+inc+rw) is compared against
raw access with increment. Adding page permission checks
increases the overhead, therefore we disable them in all
future experiments unless specified otherwise.

Throughput overhead. Unlike the latency benchmark
which uses only a single warp, in this experiment we run
hundreds of warps to saturate all compute units in the

Uhttps://github.com/gpufs/gpufs

GPU. We implement a kernel that copies data between two
memory regions. Each warp copies 1MB using 4-byte or
8-byte reads/writes per thread. We run the kernel on the
GPU using 52 threadblocks, each with 32 warps (1024
threads/threadblock). We use memory tiling [18], which
interleaves memory copy operations to fully utilize memory
bandwidth.

As the baseline we use the bandwidth
achieved by the highly optimized NVIDIA
cudaMemcpyDeviceToDevice function (152GB/s

on this GPU).

Table II shows that apointers achieve 65% of optimal
bandwidth for 4-byte reads and 97% for 8-byte reads.
Adding permission checks has no effect on 8-byte reads so
it is not shown. The performance difference between the
compiler-generated and hand-optimized apointer implemen-
tations is within 1%, so here and in the rest of the paper we
report the results for the compiler-generated version only.

Latency hiding discussion. The significantly lower over-
heads in the throughput experiment compared to the memory
latency benchmark stem from the ability of GPU architecture
to perform latency hiding by overlapping memory and
compute instructions between different warps. It therefore
allows additional instructions to be executed without per-
formance degradation, while the data is being fetched from
memory. These additional instructions form a so called free-
computation bubble [19]. Here we seek to obtain a rough
estimate of the size of that bubble on our architecture to
explain the encouraging performance results of our experi-
ments.

NVIDIA K80 GPU issues 2056 x 10° instructions per
second per GPU, and supports 240 x 10° bytes/sec of mem-
ory bandwidth. The free-computation bubble is computed as
their ratio and equals 8.6 instructions per byte of memory
traffic. In the memory copy experiment which uses four 4-
byte memory accesses (two reads and two writes with tiling),
the size of the free-computation bubble is about 124 instruc-
tions. By inspecting the compiler-generated device assembly
code (SASS) we see that the apointer access involves 105
instructions. This is slightly smaller than the bubble and in
theory should not lead to the observed slowdown. However,
the theoretical values assume single cycle execution latency
for every instruction, which is not the case in practice.
Therefore, the actual size of the free-computation bubble
is smaller, hence the overhead can be observed. Using 8-
byte accesses, however, doubles the size of the bubble and
indeed hides the apointer overheads almost completely.

The actual size of the free-computation bubble depends on
the application instruction mix — smaller for compute inten-
sive and larger for memory intensive workloads. However,
compute intensive tasks perform fewer memory accesses so
the address translation overheads are expected to be less
pronounced. We next report the results of the experiments
that demonstrate this point.

Implementation
Compiler

4-byte
99.7GB/s (65.4%)

4-byte+rw
97.7 (64.1%)

8-byte
148.7 (97.6%)

Table II: Memory bandwidth in GB/s achieved by memory copy kernel,
compared to the maximum achievable bandwidth of 152GB/s (in parenthe-
ses). Higher is better.

B. Compute-intensive workloads

We evaluate the apointer performance on a range of
workloads, each with a different amount of computation per
memory access, also called compute intensity.

We run 32 warps/threadblock and vary the number of
threadblocks from 1 to 52 to show the transition between
the latency-sensitive (fewer threadblocks) and throughput-
optimized (more threadblocks) execution mode. Full GPU
occupancy is attained with 26 threadblocks. Each workload
reads its data using apointers and accumulates the results in
a register, written back to global memory at the end of the
run. This behavior matches a common use case where data is
being read from external memory, while the generated output
is significantly smaller and can fit in internal memory. The
data accesses in this experiment do not use memory tiling.

We evaluate the following workloads:

1) Add - Performs element-wise addition of two large vec-
tors.

2) Read — Performs a simple read of a large vector.

3) Random - Each thread reads an element from global
memory, and generates a pseudo-random number using it
as a seed. For this workload, we perform different numbers
of iterations for the pseudo-random generation in order to
estimate different amounts of computation per memory read.

4) Reduce — Each warp reads a 32-element vector and per-
forms reduction by summing up the values using warp-level
shuffle instructions for intra-warp communication.

5) FFT — Each warp reads a 32-element vector and calculates
the FFT transform of the vector using warp level shuffles.
The FFT coefficients are stored in read-only constant mem-
ory.

6) Bitonic sort — Each warp reads a 32-element vector and
sorts its elements using the bitonic sort algorithm, which is
implemented using warp level shuffles.

The baseline implementations of these workloads are
identical to the apointer versions, except that they use
regular memory pointers instead.

Figure 6a shows the overheads of apointers over the base-
line when performing 4-byte reads. We sort the workloads
in the order of increasing compute intensity.

As we increase the number of threadblocks, the overheads
due to apointers decreases significantly, in particular for the
workloads with low compute intensity, such as Add and
Read, which improve more than two-fold. The most compute
intensive workloads, such as Random 50 and Bitonic sort,
exhibit relatively small overheads for few and many thread-
blocks alike, because computations dominate the overall
performance. The rest of the workloads (except for FFT

which we discuss below) show more modest improvement,
because the size of the free-computation bubble shrinks.

Much better results can be achieved if we batch memory
reads into 16-byte loads to amortize the access overheads
and increase the size of the free-computation bubble. The
results in Figure 6b show much lower overhead, with an
average of 20% (7% when excluding FFT).

Anomalous performance of FFT. The overhead of the
FFT workload is significantly higher than that of any other
workloads with similar compute intensity, such as Reduce,
and it remains high regardless of the number of threadblocks.
We note that this workload exhibits no register spillage in
both versions.

We find that such behavior is the result of significant
differences in the generated SASS code between the apointer
and the baseline. Interestingly, the differences are in the
code regions unrelated to the global memory accesses where
apointers are used. For example, we observe that the order
in which the FFT coefficients and the kernel inputs are
loaded relative to each other is reversed in two versions.
We believe that these compiler artifacts are the main reason
for the extremely high overhead of this workload here and
in the rest of the FFT experiments, which we include for
completeness.

C. Page cache and apointers

We next evaluate the overhead of adding the software
address translation layer to the GPUfs page cache. Unlike the
previous experiments, in these experiments accesses through
the apointer might trigger major or minor page faults. Here,
and in all other experiments in this section, we configure the
page size to be 4KB.

Page faults. We evaluate the overhead imposed by the
apointer page fault logic on top of the original gmmap ()
call in GPUfs. gmmap () locks the page up in the page table
(minor page fault) and brings the data from the host (major
page fault) if necessary.

We run a kernel with 52 threadblocks each with 32 warps.
Each warp accesses 512 different pages in a loop, with all
threads in a warp accessing the same page. The baseline
uses gmmap () to map a new page in each iteration. The
apointer version calls gvmmap() once in each threadblock
to initialize the apointer, and then uses pointer arithmetics
to access other pages. We store the file in CPU RAM, using
RAMTSs in-memory file system to measure the worst-case
overheads of apointers.

We use the same workload to evaluate both major and
minor page faults. We run the kernel twice. We use the first
execution to measure the cost of major page faults, and the
second execution to measure minor page faults, such that
the first one serves for the page cache warmup.

Table III shows the overheads over the baseline for
different apointer implementations. For major page faults,
all overheads are within the measured standard deviation

 Add Read Random 1 Reduce mAdd Read

W FFT ® Random 10 W Bitonic sort ® Random 50 WFFT ® Random 10

100% 100%
X 80% & 80%
?g: 60% B 60%
-% 20% £ S 40%
3 20% I I o 20%

o% I- I.
178 1378 2678 5278 178

Number of Threadblocks

(a) 4-byte reads

1 3

' : : 100%
< 80%
= 60%

qJ
£ 40%

¢
1. itk ®
- S [|| 0%

Number of Threadblocks

(b) 16-byte reads

Random 1 Reduce Add Read Random 1 Reduce

H Random 10 | Bitonic sort B Random 50

26TB 527TB 17B 1378 267TB 52TB
Number of Threadblocks

| Bitonic sort B Random 50 W FFT

115

(c) 4-byte reads with GPUfs

Figure 6: Apointer overheads as a function of GPU occupancy (in number of threadblocks) (a) for 4-byte reads and (b) 16-byte reads excluding GPUfs

(§ VI-B), and (c) for 4-byte reads with GPUfs (§ VI-C). Lower is better.

Implemetation | Minor Pagefault Major Pagefault

Apointer Short 20% No observable overhead
Apointer Long 24% No observable overhead
no TLB 13% No observable overhead

Table III: The overhead of short apointer, long apointers, and long apointers
without TLB, with major and minor page faults. Lower is better.

because they are masked by the memory transfers from the
host to the GPU. For minor page faults, both short and
long apointer types which use TLB behave similarly. The
best performance, however, is achieved without the TLB
with long apointer because it avoids the overheads of TLB
updates, as we analyze next.

Effects of TLB size. We run a kernel using a single
threadblock comprised of 32 warps (1024 threads). Each
thread reads one 4-byte element. All pages already reside in
the page cache, so only minor page faults are triggered. To
stress the TLB implementation, we vary the page reuse rate
across warps in a threadblock, that is, the number of distinct
pages accessed by a threadblock. Overall, each warp reads
4KB. The read offset inside the page is unique per warp, so
that there is no data reuse across warps.

Figure 7 shows the access time per page. As expected, the
TLB is effective when the number of unique pages accessed
by each warp is low (high reuse). However, the more unique
pages are accessed, the higher the TLB miss rate, and
the more pronounced its overhead, leading to decreased
performance. The performance without the TLB improves
exactly when the TLB becomes inefficient, because it avoids
TLB updates.

D. Compute-intensive workloads with page cache.

We use the same compute-intensive workloads as in
Section VI-B, but now with GPUfs to access files. We use
GPUfs without apointers as the baseline, and implement an
apointer-based version with memory mapped files for input
and output. Each thread performs 4-byte accesses and reads
one page per warp, (one page fault per 32 accesses).
Minor page faults. In this experiment the data is prefetched
into the page cache. Figure 6¢ shows the apointer overheads
on top of GPUfs for the best performing apointer implemen-

—-TLB 2 TLB 4 TLB 8 TLB 16 —+TLB 32 —no TLB
120K
100K

80K

60K

Access time / Page (cycles)

1 2 4 8 16 32
Unique pages accessed

Figure 7: Read access times in cycles per page, as a function of unique
pages accessed per threadblock, for different TLB sizes. Lower is better.

tation without the TLB. We observe only 16% slowdown on
average for fully utilized GPU (excluding FFT). We also
repeat this experiment with 16-byte loads, which results in
the overhead decreased to 9% for full utilization (not shown
in the graph).

Major page faults enabled. We run the same experiment,
but with major faults enabled. We observe less than 1%
overhead of apointers in all the workloads, including FFT.

E. End-to-end application performance

We use an image collage workload to evaluate the end-
to-end performance of the system.

Image collage. The image collage (see Figure 8 is created
by replacing blocks in the input image with “similar” images
from a large dataset, where the similarity is defined as the
Euclidean distance between image color histograms [20].
To quickly find an image in a large dataset, the algorithm
employs a Locality Sensitive Hashing (LSH) [21] heuristic,
which narrows down the exhaustive search to only a few
images in the same LSH bucket. The dataset images are
placed in buckets indexed by the LSH keys derived from
their histograms. For each block in the input, we search for
the replacement image among the candidate images located
in the buckets indexed by the block’s LSH keys.

We use 10 million images from the tiny image
dataset [22]. Their histograms are pre-computed and stored

Figure 8: Collage example

in a file, with each histogram padded to 4KB. The size of
the file with all the histograms is 38.14GB.

Our GPU implementation calculates the histogram of
each 32 x 32 block, computes its LSH keys, reads the
candidate histograms from the respective buckets stored in
a file, exhaustively searches for the closest ones among
the candidates, and in the end produces the indexes of the
images to use in the collage. All these steps are performed
in a single GPU kernel. The final stage of creating the output
image is executed on the CPU.

GPUfs performance. We first evaluate the GPUfs perfor-
mance without apointers by implementing several versions
of the image collage algorithm:

1) CPU only (baseline) — This version uses Intel’s Threading
Building Blocks (TBB) and 256bit AVX instructions to
execute on 12 CPU cores.

2) CPU+GPU - The GPU computes the LSH keys, and
the CPU then groups them, eliminates duplicates, reads the
candidates from the dataset, and invokes the GPU to search
among candidates. GPUfs is not used.

3) GPUfs — All stages are executed on the GPU, using the
warp-level GPUfs API with the new paging subsystem.

4) GPUfs + ActivePointers— As in GPUfs, but while mapping
the whole file with the image dataset into GPU memory and
accessing through apointers.

We use several high-resolution images of different con-
tents and sizes. We store the entire dataset in CPU RAM
using the RAMTs file system. The GPUfs page cache size is
set to 2GB out of 12GB GPU RAM.

Figure 9 shows the relative speedup over the baseline CPU
run for each implementation and input combinations. Differ-
ent inputs exhibit different levels of data reuse (specified in
labels on top of the curve), because in larger images more
visually similar blocks are available. The GPUfs version
outperforms both CPU and CPU+GPU for large image sizes,
with an average speedup of 1.6x and 2.6x over the CPU
and CPU-GPU versions respectively.

For the largest image, the size of the candidate images to
be processed exceeds the size of the page cache, thus some
data gets evicted from the cache. However we observe no
significant slowdown.

Image collage using memory mapped files via apointers.
The last bar in Figure 9 shows the end-to-end application
performance when using apointers to access the dataset.

mCPU mCPU+GPU GPUfs GPUfs + active pointers

0.8ms o 89.49% 100%
0.7ms 85 58% 90%
0.6ms fg:
0.5ms 60%
0.4ms 41.61% 50%

40%

30%
20%
I I 10%
0%

512x384 1024x768 2048x1536 4096x3072 8192x6144
Image Size

Runtime per block (ms)

0.3ms
0.2ms
0.1ms

0

Figure 9: Runtime of the image collage implementations, normalized per
image block. Lower is better. The right axis shows data reuse per input.

We observe that the use of apointers does not introduce
any measurable overheads over the fastest GPUfs-only im-
plementation, and therefore achieves both high end-to-end
performance and programming simplicity in this complex
I/O-intensive application.

Unaligned access. We highlight the major usability benefit
of memory mapped files: linear address space abstraction
which is oblivious to page boundaries. We reimplement
the collage workload while removing the padding, thereby
storing the 3KB histograms in a file, so they are no longer
aligned at the page boundary. The code using apointers
works without any modifications, whereas the version using
the original gmmap requires significant code changes.

VII. DISCUSSION

The software-only address translation design presented in
this paper shows promise as a building block for implement-
ing convenient I/O services on commodity discrete GPUs.
However, its performance and practical appeal can be further
improved with only minor changes to existing compilers and
GPU hardware.

Register pressure. Register pressure is a well-known prob-
lem in many GPU applications. While the apointer itself
does not add new registers (it uses 64 bit, like standard
pointers), the apointer operations add additional registers,
which can lead to performance degradation. The NVIDIA
compiler sometimes struggles with the register allocation,
spilling registers in performance-critical loops. Fortunately,
improved compiler support along with the increase in the
number of registers — double in the recent hardware gen-
eration (Kepler K40 GPU vs. Kepler K80 GPU) — makes
the register pressure less critical for current and future
architectures.

Compiler support. Having access to the front end CUDA
compiler would allow additional code optimizations, such
as different implementations for memory reads and writes,
as well as make possible static code analysis to reduce the
number of apointer bound checks [23].

Instructions for boundary checking and pointer incre-
ment. Page boundary checking and pointer arithmetics are
the main sources of apointer performance overheads, and
the main reason for higher register pressure. Hardware
extensions for these operations, similar to the ones proposed
for CPUs [23], and special instructions which fuse shuffle
and integer arithmetics, could help reduce or eliminate these
overheads.

I/O preemption. ActivePointers raise the problem of I/O
preemption for GPU threads. A major page fault incurs a
long-latency access to the backing store, e.g., a disk. On
today’s GPUs, the stalled warp wastes the SM resources
while waiting for data, calling for the addition of a hardware-
assisted threadblock preemption mechanism [24].

VIII. RELATED WORK

Our work relates to a variety of topics in computer
architecture, operating system design, compilers, concurrent
algorithms, and GPU computing.

Hardware virtual memory in GPUs. Recent works pro-
pose hardware support for virtual memory on GPUs which
supports page faults [9], [12]. Existing CPU-GPU SoCs,
such as AMD A10 [14], also provide shared virtual memory
and page fault support. These devices, however, exercise a
different design point and their performance cannot compete
with that of discrete GPUs, which are the focus of this paper.
The applicability of our work to APUs/HSA is, however, an
open research question, which we intend to address in the
future.

Software memory management on GPUs. NVIDIA re-
cently introduced a Unified Virtual Memory mechanism
based on the Asymmetric Distributed Shared Memory de-
sign [25]. This design allows both CPU and GPU to share
data using a unified address space. The memory is allocated
on the GPU and can be moved transparently to the CPU
when CPU processes access it. It does not support page
faults on the device; the memory is thus moved back to the
GPU upon kernel invocation. The Region-based Software
Virtual Memory library [26] initially allocates memory on
the CPU, and is able to transfer data between both systems
upon request. This approach, however, still requires the
entire dataset to be copied into a dedicated memory location
on the host prior to GPU execution, and does not support
direct access to the file system from the GPU.

System abstractions for GPUs. GPUfs and GPUnet [1],
[2], [16] provide file access and networking directly to GPU
programs. We enhance the GPUfs layer by redesigning the
page cache to allow higher concurrency and smaller page
size.

Large dataset support for GPUs. Several approaches have
been proposed to handle datasets larger than the GPU
physical memory. Some of them are application-specific,

e.g., Shredder [27], while others [28] require a special pro-
gramming model. Whether application specific or requiring
a special programming model, they all use data chunking
and multiple kernel invocations to achieve their goal. This
makes them inapplicable when dealing with data dependent
access patterns.

The authors of VAST [29] propose to predict application
data accesses before kernel invocation to pre-load its data
into the GPU. This mechanism, however, cannot handle data-
driven accesses.

Pointer instrumentation. Our work uses techniques similar
to the ones used for pointer safety and C-style arrays
boundary checking [30]-[32]. The authors of those papers
suggest the use of both compiler and hardware support to
reduce the overhead of these checks, including static analysis
to eliminate redundant checks, and special hardware support
to speed them up [23]. We believe that our work can also
benefit from these techniques.

Managed GPU languages. Programming languages for het-
erogeneous systems such as Harlan [33] avoid the need for
shared virtual memory by providing higher level abstractions
and data structures. Our work differs in that it aims to
provide memory-mapped file abstractions for low-level C++
programs.

Software-managed address translation. A software mech-
anism has previously been proposed for virtual address
translations on CPUs [34]. Our approach is orthogonal to this
work: it targets different processor architecture and employs
different optimization techniques.

IX. CONCLUSION

We describe ActivePointers, a lightweight software-only
address translation mechanism for GPUs, which drives a
GPU-centric virtual memory management design with page
fault handling and address space modification from GPU
programs. We demonstrate the benefits and performance of
ActivePointers by implementing a fully functional memory-
mapped files abstraction on NVIDIA GPUs. We achieve low
overhead address translation thanks to (1) a co-design of a
page cache and a translation mechanisms which enables safe
caching of the virtual-to-physical mappings in per-thread
hardware registers, and (2) GPU inherent latency hiding
capabilities which hide the translation overheads.

The current software-only design is complementary to the
hardware VM, and works well for accessing I/O devices.
Broader applications of ActivePointers beyond the device
I/0 will likely require special hardware support such as the
one discussed in § VII. These hardware changes, however,
are quite different and potentially less intrusive than the
traditional hardware VM mechanisms. We believe, therefore,
that this work will encourage pursuing new research direc-
tions toward providing better hardware support for high-level
operating system abstractions in future GPUs.

ACKNOWLEDGEMENTS

Mark Silberstein is supported by the Israel Science Foun-
dation (grant No. 1138/14), the Israeli Ministry of Science,
and the Israeli Ministry of Economics via HiPer consortium.

(1]

(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(171

REFERENCES

M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “GPUfs:
integrating file systems with GPUs,” in ASPLOS’13. ACM,
2013.

S. Kim, S. Huh, X. Z. Yige Hu, A. Wated, E. Witchel, and
M. Silberstein, “GPUnet: Networking Abstractions for GPU
Programs,” in OSDI’14. USENIX, 2014, pp. 6-8.
GPUDirect, “GPUDirect RDMA,” http://docs.nvidia.com/
cuda/gpudirect-rdma/index.html, 2015.

J. Pan and D. Manocha, “Fast GPU-based Locality Sensitive
Hashing For K-nearest Neighbor Computation,” in SIGSPA-
TIAL’11. ACM, 2011, pp. 211-220.

A. S. S. Michel and R. Schenkel, “RankReduce—Processing
K-Nearest Neighbor Queries on Top of MapReduce,” in
Workshop on Large-Scale Distributed Systems for Information
Retrieval, 2010, pp. 13-18.

S. Petrovi¢, M. Osborne, and V. Lavrenko, “Streaming First
Story Detection with Application to Twitter,” in Annual
Conference of the Association for Computational Linguistics,
2010, pp. 181-189.

E. Zadok, 1. Badulescu, and A. Shender, “CryptFS: A Stack-
able Vnode Level Encryption File System,” Tech. Rep., 1998.
HMM, “Heterogeneous Memory Management (mirror pro-
cess address space on a device MMU),” https://lwn.net/
Articles/597289/, 2014.

J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64
Address Translation for 100s of GPU Lanes,” in HPCA’14.
IEEE, 2014, pp. 568-578.

N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and
S. W. Keckler, “Page Placement Strategies for GPUs within
Heterogeneous Memory Systems,” in ASPLOS’15. ACM,
2015, pp. 607-618.

N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and
T. F. Wenisch, “Unlocking Bandwidth for GPUs in CC-
NUMA Systems,” in HPCA’15. 1EEE, 2015, pp. 354-365.
B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural
Support for Address Translation on GPUs,” in ASPLOS’14.
ACM, 2014.

P. Rogers, “Heterogeneous System Architecture Overview,”
in Hot Chips’13, vol. 25, 2013.

D. Bouvier and B. Sander, “Applying AMD’s Kaveri APU
for Heterogeneous Computing,” in Hot Chips’14, 2014.

S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
F. M. Kaashoek, R. Morris, and N. Zeldovich, “An Analysis
of Linux Scalability to Many Cores,” in OSDI’10, vol. 10,
no. 13. USENIX, 2010, pp. 86-93.

M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “GPUfs:
Integrating a File System with GPUs,” TOCS, vol. 32, no. 1,
p. 1, 2014.

S. Shahar and M. Silberstein, “Supporting data-driven I/O on
GPUs using GPUfs,” in SYSTOR’16. ACM, 2016.

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

S. Ryoo, C. L. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W. mei W Hwu, “Optimization Principles
and Application Performance Evaluation of a Multithreaded

GPU using CUDA,” in PPoPP’08. ACM, 2008, ;3) 73-82.
D. Merrill and A. Grimshaw, “High Performance and Scalable

Radix Sorting: A Case Study of Implementing Dynamic
Parallelism for GPU Computing,” Parallel Processing Letters,
vol. 21, no. 02, pp. 245-272, 2011.

S.-H. Cha and S. N. Srihari, “On Measuring the Distance
Between Histograms,” Pattern Recognition, vol. 35, no. 6,
pp. 1355-1370, 2002.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-Sensitive Hashing Scheme Based on P-Stable Dis-
tributions,” in Annual Symp. on Comp. Geometry. ACM,
2004, pp. 253-262.

A. Torralba, R. Fergus, and W. T. Freeman, “80 Million Tiny
Images: A Large Data Set for Nonparametric Object and
Scene Recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 11, pp. 1958-1970, 2008.

S. Nagarakatte, M. M. Martin, and S. Zdancewic,
“WatchdogLite: ~ Hardware-Accelerated ~ Compiler-Based
Pointer Checking,” in HPCA’14. 1EEE, 2014, p. 175.

L. Zeno, A. Mendelson, and M. Silberstein, “GPUplO: The
case for I/O-driven preemption on GPUs,” in Workshop on
General Purpose GPU (GPGPU’16). ACM, 2016.

I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro,
and W. mei W Hwu, “An Asymmetric Distributed Shared
Memory Model for Heterogeneous Parallel Systems,” in
ACM SIGARCH Computer Architecture News, vol. 38, no. 1.
ACM, 2010, pp. 347-358.

F. Ji, H. Lin, and X. Ma, “RSVM: A Region-Based Software
Virtual Memory for GPU,” in PACT’13. 1EEE, 2013, pp.
269-278.

P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder:
GPU-Accelerated Incremental Storage and Computation.” in
FAST’14. USENIX, 2012, p. 14.

C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel, “PTask: Operating System Abstractions to Man-
age GPUs as Compute Devices,” in SOSP’11. ACM, 2011,
pp. 233-248.

J. Lee, M. Samadi, and S. Mahlke, “VAST: The Illusion of a
Large Memory Space for GPUs,” in PACT’14. ACM, 2014,
pp. 443-454.

G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer, “CCured: Type-Safe Retrofitting of Legacy Soft-
ware,” TOPLAS’05, vol. 27, no. 3, pp. 477-526, 2005.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“SoftBound: Highly Compatible and Complete Spatial Mem-
ory Safety for C,” in ACM Sigplan Notices, vol. 44, no. 6.
ACM, 2009, pp. 245-258.

J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic,
“Hardbound: Architectural Support for Spatial Safety of the
C Programming Language,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 2, pp. 103-114, 2008.

E. Holk, R. Newton, J. Siek, and A. Lumsdaine, “Region-
Based Memory Management for GPU Programming Lan-
guages: Enabling Rich Data Structures on a Spartan Host,”
in OOPSLA’14. ACM, 2014, pp. 141-155.

B. Jacob and T. Mudge, “Software-Managed Address Trans-
lation,” in HPCA’97. 1IEEE, 1997, pp. 156-167.

